M1 Arbeitsblatt 6 für den Unterricht

- 1) Aufgabe
- a) Zeichnen Sie die Schaubilder der Funktionen im Intervall D = $[0; 2\pi]$
- $h_1(x) = 0.5 \sin x$
- $h_2(x) = -2 \sin x$
- b) Wie kann man K_{h1} und K_{h2} aus der Sinuskurve mit der Funktionsgleichung $g(x) = \sin(x)$ konstruieren?
- c) Welche Amplitude und Periode haben diese Funktionen?
- d) Welche Amplitude und welche Periode hat eine Sinuskurve K_f mit der Funktionsgleichung $f(x) = a \cdot \sin x$
- 2) Aufgabe
- a) Zeichnen Sie die Schaubilder der Funktionen

$$h_1(x) = \sin 2x$$
;

$$D = [0; 4\pi]$$

$$h_2(x) = \sin 0.5x;$$

$$D = [0; 4\pi]$$

- b) Welche Amplituden haben diese Funktionen?
- c) Strecken Sie die Funktion mit der Funktionsgleichung

$$h(x) = a \cdot \sin(x)$$

um das c-fache in x-Richtung.

Welchen Wert hat die Periode dieser gestreckten Funktion s

Wie lautet die Funktionsgleichung von s?

c) Welche Periode hat dann umgekehrt eine Funktion f mit k>0 und:

$$f(x) = a \cdot \sin(kx)$$

- 3) Aufgabe
- a) Zeichnen Sie die Schaubilder der Funktionen

$$f(x) = \sin 2x + 2$$

y-Achse: 1 LE = 2 cm, x-Achse: 1 LE = 2 cm, D=
$$[0, 2\pi]$$

$$g(x) = \sin 0.5x - 1$$

y-Achse: 1 LE = 2 cm, x-Achse: 1 LE = 1 cm, D=
$$[0, 4\pi]$$

- b) Kann man die Kurven durch Verschiebung schon bekannter Kurven zeichnen?
- c) Welche Amplitude und Periode haben diese Funktionen?
- d) Welche Amplitude und welche Periode hat eine Sinuskurve f mit der Funktionsgleichung $f(x) = a \cdot \sin(kx) + b$ und k>0
- 4) Aufgabe

Geben Sie die Funktionsgleichung g der Kurve K_g an, die durch Verschiebung um den Wert x_0 in x-Richtung der Kurve K_f mit der folgenden Funktionsgleichung f entsteht:

$$f(x) = a \cdot \sin(kx) + y_0$$

5) Aufgabe

5.1) Berechnen Sie die Ableitungen (für k>0) von:

```
a) f(x) = \sin(kx)
```

$$f'(x) = ?$$

b)
$$h(x) = cos(kx)$$

$$f'(x) = ?$$

c)
$$\int \sin(kx) dx$$

d)
$$\int \cos(kx)dx$$

5.2)

a) Berechnen Sie mathematisch für k>0:

$$\int_{0}^{2\pi/k} \cos(kx) dx$$

Können Sie den errechneten Wert auch anschaulich begründen?

- b) Berechnen Sie die Fläche zwischen der x-Achse, dem Schaubild der Funktion mit der Funktionsgleichung $h(x) = \cos(kx)$ und den Geraden mit den Gleichungen x=0 und $x=2\pi/k$ mit k>0.
- durch Berechnen der negativen und positiven Flächeninhalte.
- durch Ausnutzen der Symmetrie

5.3)

a) Berechnen Sie mathematisch:

$$\int_{0}^{2\pi/k} \sin(kx) dx$$

Können Sie den errechneten Wert auch anschaulich begründen?

- b) Berechnen Sie die Fläche zwischen der x-Achse, dem Schaubild der Funktion mit der Funktionsgleichung $f(x) = \sin(kx)$ und den Geraden mit den Gleichungen x=0 und $x=2\pi/k$
- durch Berechnen der negativen und positiven Flächeninhalte.
- durch Ausnutzen der Symmetrie

6) Aufgabe

Welchen Abstand (bzgl. der x-Richtung) haben bei Kurven mit der Funktionsgleichung $g(x) = a \cdot \sin(k(x-x_0)) + y_0$

ein Wendepunkt und ein benachbarter Extrempunkt voneinander?

7) Aufgabe

Um welchen minimalen Wert muss die Sinuskurve der Form $f(x) = \sin x$ nach rechts verschoben werden, damit die so verschobene Kurve die folgende Funktionsgleichung besitzt: $g(x) = \sin (x+100,25 \cdot \pi)$

8) Aufgabe

Um welchen Wert y_0 muss die Sinuskurve der Form $y = a \sin(kx)$ (mit a>0 und k>0) jeweils in y-Richtung und **minimal** um $x_{minR} \ge 0$ nach **rechts** und $x_{minL} \ge 0$ nach **links** in x-Richtung verschoben werden, so dass die verschobene Kurve jeweils die folgende Funktionsgleichung besitzt?

Bestimmen Sie von folgenden Funktionen:

Amplitude A, Periode p, y₀, x_{minR}, x_{minL}

Beispiele:

1)
$$f_1(x) = \sin(2x)$$

2)
$$f_2(x) = 3 \cdot \sin(\frac{1}{2}x) + 4 =$$

3)
$$f_3(x) = 2 \cdot \sin(-\frac{1}{3}x) =$$

4)
$$f_4(x) = 1.5 \cdot \sin(3x - \frac{3\pi}{4}) - 6 =$$

5)
$$f_5(x) = 2 \cdot \sin(-\frac{\pi}{2} - \frac{3}{5}x) + 7 =$$

6)
$$f_6(x) = 2 \sin(0.5x - 100\pi) =$$

7)
$$f_7(x) = -3 \sin(-\frac{3}{2}x - \frac{89}{4}\pi) =$$

8)
$$f_8(x) = -5 \sin(-10x + 10000) - 7 =$$